J-SCOPE (JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem): seasonal ocean forecasts for fisheries management

Isaac Kaplan NOAA Northwest Fisheries Science Center

Samantha Siedlecki, Al Hermann, Nick Bond, Tam Nguyen, Jan Newton, Simone Alin

Check out our website: http://www.nanoos.org/products/j-scope/home.php

Goal: forecast up to 6-9 months of California Current ocean conditions

- Climate Forecast System (CFS) for coarse scale (50km) predictions of ocean physics, 6-9 months in advance
- Regional Ocean Modeling System (ROMS) is available to downscale these results almon, and

coasial pelagic species

Marine resource management

Tommasi et al., (in revision)

April 2016 forecast

http://www.nanoos.org/products/j-scope/forecasts.php

Building a Forecast System

Climate Forecast System (CFS) - ocean boundary conditions and atmospheric forcing (Ocean: ~50km, Atm: ~200km resolution)

CFS + UW CMG regional ROMS-based model with biogeochemistry (~1.5 km resolution, 40 vertical levels, with rivers and tides)

Empirical relationships from observations applied to the modeled fields to take those forecasts to the ocean health indices :

- pH (Alin et al, in prep; Alin et al, 2012)
- sardines (Kaplan et al, 2016)

UW Cascadia Model setup

http://faculty.washington.edu/pmacc/ cmg/cmg.html and Giddings et al, 2014

Sardine Forecast

Kaplan, I. C., Williams, G. D., Bond, N. A., Hermann, A. J. and Siedlecki, S. A. (2016), **Cloudy with a chance of sardines**: forecasting sardine distributions using regional climate models. Fisheries Oceanography, 25: 15–27. doi: 10.1111/fog.12131

Sardine predicted present off Canada, but actually absent (2015, 2016)

We can 48 predict sardine -atitude $(^\circ)$ Latitude (∘) distributions with moderate skill, but not Predicted present Predicted present Predicted absent Predicted absent very well for 2015-2016 -125 -127-127 -125Longitude (°) Longitude (°)

Sea surface temp

Bottom temp Bottom O2

We have better skill to predict bottom conditions (temperature, O2) than SST

What are key fisheries species that respond to bottom oxygen and temperature?

Hake (\$76 million in 2013)

Agostini et al, J. Marine Systems, Volume 71, Issues 3–4, 2008, 237–248

What are key fisheries species that respond to bottom oxygen and temperature?

Dead crabs on the beach (J. Lubchenco)

Keller et al. (2010) Fisheries Oceanography

Froehlich et al. (2013) Estuaries and Coasts

Forecasting Dungeness Crab Megalopae Distribution using a Generalized Linear Model and J-SCOPE

Forecasts

Best Fitting Variable Combination:

Pilot study by Suzanna Officer

We are focusing forecasts on crab management needs and seasonal decisions

Tomassi et al. (in review), after Hobday et al. 2016

Seasonal decision making by state and tribal managers and Dungeness crab industry

Inspired by : Hobday et al. Fisheries Oceanography 2016

Seasonal forecasting for decision support in marine fisheries and aquaculture

Decision lead time

7-10 days

Minimal warning time Reactive management

> Weather forecasting

Weeks to months

Early window for implementation of strategies to minimize impacts

> Seasonal forecasting

Decades to centuries

Long-term planning

Climate projection

Hobday et al. Fisheries Oceanography pages 45-56, 4 APR 2016 DOI: 10.1111/fog.12083

Downscaled model captures N-S and onshore offshore SST trends

